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ABSTRACT 

This paper gives a formula for the number of members of a given 'nice' fam- 

ily of rational curves on a surface passing through the appropriate number 

of general points, expressing this number in terms of reducible members of 

the family. Similar formulae have been obtained previously using methods 

of quantum cohomology, but the present method is by contrast completely 

elementary, relying merely on some simple geometry on ruled surfaces. 

The purpose of this paper is establish and apply an enumerative formula or 

'method'  dealing with a family C = {C~: y E Y} of rational curves on a variety 

S, e.g., a rational surface. Significantly, the family C is not assumed to be 

the family of 'all' rational curves of given homology class: rather, we require 

only that it be sufficiently large (n = dim Y >_ 3) and well-behaved as regards 

deformation theory and codilnension-1 degenerations. The formula computes 

the 'degree' d(C), i.e., the number of curves Qv through n general points of 

S, in terms of analogous degree-type numbers attached to the (codimension-1) 

boundary component's Z of Y, which parametrize the reducible curves (there are 

several such numbers depending on how the components of the reducible curve 

are 'weighted'). 

Some comments are in order on connections with quantum cohomology. While 

the author denies any first-hand knowledge or understanding of the latter, its 

algebro-geometric aspect has been represented as essentially equivalent to cer- 

tain recursive formulae for counting rational curves, which are contained in the 

associativity formula for quantum multiplication. It has seemed to the author 

that these recursions, at least, are largely a matter of taking advantage of tile 
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'slack' in the problem, i.e. the large number of deformation parameters for ra- 

tional curves (on 'convex' varieties). This viewpoint suggests a connection with 

Mori's bend-and-break technique, a small part of which is the observation that  

once a rational curve 'bends' sufficiently (on a surface, this means moving in 

a 3-parameter family) it will 'break', i.e., admit a reducible limit. Our general 

formula (Theorem 1, Section 1) is merely a quantitative version of this idea. As 

already indicated, it applies to any given (good enough) family and accordingly 

does not rely on existence of (compact) moduli spaces for (reparametrization 

classes of) stable maps as in [FP]. The proof is a completely elementary argu- 

ment involving (multi-) sections and fibre components on a birationally ruled 

surface. 

Now for better or worse, the effect of Theorem 1 is to shift the difficulty 

elsewhere, namely to 'enumerating' the families parametrized by the boundary 

components Z, which in principle is a lower-degree problem, but not necessarily 

well-behaved. The simplest Z are of 'product type' and parametrize a pair of 

independently varying curves plus a point of their intersection: these are un- 

problematic. However, there are others, such as those parametrizing a pair of 

mutually tangent curves, and worse: a variety of examples is given in Section 2. 

In Section 3 we consider the problem of enumerating plane curves of given 

degree d and given moduli, i.e., birational to a fixed smooth curve C of genus g 

(the analogous problem with fixed d, g and unrestricted moduli, a.k.a, the degree 

of the Severi-variety having long been settled [R]) (it should be pointed out that  

the main recursion formula of [R] contains a misprint which has been corrected 

in [R1]). If N(d, g) denotes the number of such curves through 3 d -  2g + 2 general 

points (or 3d - 1 if g = 1) then Pandharipande [P] has shown (where we use the 

standard notation Nd = N(d, 0}) 

N(d, 1} = ( d -  1 ) ( d -  2)Nd. 
2 

Here we give a recursive procedure for computing N(d, 2/. While it is fairly 

clear what sub-problems would have to be solved to extend this to higher genus, 

it is unclear whether those can be solved, especially ones involving high-order 

contact between rational curves. However, see [Rq for a different approach to 

this problem. In the appendix we prove a proposition of independent interest 

about representing a divisor classs on a Del Pezzo surface by a rational curve. 

The referee points out that closely related results have also been obtained by 

Caporaso and Harris (to appear in Compositio Mathematica); on the other hand, 

the method of this paper has been extended by the author to some other cases 

such as elliptics and cuspidals in the plane JR2] and rational space curves [R3]. 
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1. Genera l  formula  

Suppose given a fiat family {6'y: y 6 Y} of curves on a smooth projective surface 

S, parametrized by an irreducible n-dimensional projective variety Y, such that  

a general Cy is a irreducible rational curve. Thus we have a diagram 

(1.1) 

C c Y x S/=P~S 

Y 

where # is fiat with fibres ~ - l (y )  = ~,y. We assume Y is normal. In what follows, 

only geometry is codimension _< 1 on Y will play any role (so we could actually 

assume Y nonsingular without either losing generality or gaining convenience). 

Let n: C --~ d be the normalization and 7r = #n  the resulting fiat family with 

fibres C~ = n - l ( y )  mostly isomorphic to IP 1. We let OY C Y, the 'boundary',  

denote the discriminant locus of r .  We now introduce a strong 'good behavior' 

condition on our family which, while not absolutely essential, makes for a simpler 

enumeration formula and is satisfied in applications. 

(1) (*) Y is normal, hence C is smooth in codimension 2 except at singular 

points of fibres; for a generic point z of any (n - 1)-dimensional component 

Z of OY, the fibre Cz has just two components Cl,z, C2,~, both Fl,s, and 

Cl,z N C2,z = {p} is an A~-I x C "-1 singularity on C for some g = g(Z). 

Now the most basic numerical character attached to the family C is the 

d e g r e e  (classically, the grade) ,  which we denote by d(C) (or sometimes, when 

C is understood, by d(Y), and which is defined to be the number of y 6 Y such 

that Cy contains n = dimY general points s l , . . .  , s ,  C S, i.e. 

d(C) = # { y  6 Y: C' v ~ s l , . . . , s n } .  

To define analogues of degree for boundary components, it will be convenient 

to count each one twice by introducing a 'marking'. Thus define a m a r k e d  

boundary component Z to consist of a boundary component Z'  together with an 
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ordering of the two corresponding components Cl,z, C2,z, z E Z; if the compo- 

nents are monodromy-interchangeable we still consider both orderings. To this 

data we associate the following degrees: 

(1.2) 
dl'l(Z) = #{ z  e Z: G 9 s l , . . .  , sn - l , s l  C 01,~, s2 e C2,~}, 

d~ = #{ z  e Z: Cz 9 s l , . . .  ,Sn--l,Sl,S2 E C2,z. 

The simplest--though by no means all--boundary loci are those where the two 

components vary independently. More precisely, let us say that a boundary locus, 

sum of boundary components, is of p r o d u c t  t y p e  if it can be naturally identified 

with a locus {(C1, C2, p E C'1 n C'2)}, where C'i C {C/} are independtly generic 

in their respective (irreducible) families of dimension ni, nl  + n2 = n - I, C1 

and C2 meet transversely and p E C1 A G'2 can be specified arbitrarily (obviously 

in exactly C'1.C'2 ways). For Z of product type, clearly 

dI"(Z)  = (nnLl l )d({C,})d({C2})C, .C2,  

(1.3) dO,2(Z) = (n-n1 1 )  d({C1})d({C2})Cl.C2. 

THEOREM 1: In the above situation, suppose moreover n __ 3. Then for any line 
bundle L on S, we have 

(1.4) L2d(y) = ~-~ s - (CI,~.L)2d~ 
z 

the sum being over all marked boundary component Z with corresponding generic 
curves el,z,  C2,z 

Proof." First we might as well cut Y down to a 3-fold by imposing s4, . . .  , s,~ and 

henceforth assume n = 3. Then cut Y down to a (smooth) curve B by imposing 

.sl, s2 and minimally resolve Cy x B, thus obtaining a diagram 

x L s  
(1.5) 7r $ 

B 

with X a smooth surface, r a blown-up pl_bundle with sections S/corresponding 

to si, i = 1, 2, and reducible fibres of the form 

(1.6) C i = C I  + E~ + . . . +  E~,_, +C~ 
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with f(E] + . . .  + El_ l )  = pi, a point on S, and ~, = e(Z,) where Z, is the bound- 

ary component  whence C i comes. For future use, we note here that  knowing the 

structure of the reducible fibres C i is equivalent to knowing the singularity type 

of C along Zi, and in any event is the only thing we need to know this singularity 

for. It is obvious- -but  nevertheless c r u c i a l - t h a t  the divisor class group of X is 

generated by any section plus fibre components. Note that  (El) 2 = - 2 ,  (Cj) 2 = 

- 1 .  It is easy to see from this firstly that  

(1.7) (,l )) 
slEC[ 1=1 s2EC 1. g=l 
s2eC~ s, eC~ 

F = fibre. Taking the dot product with S 1 yields - m  = S~. 

As sl and s2 are interchangeable by a suitable monodromy tranformation and 

dot products are preserved, we also have - m  = S~, so taking the dot product of 

(1.7) with $2 yields 

( 1 . 8 )  m = E e i  = Z e(Z)dl'l (Z). 
s~eC~ Z 
s2EC~ 

Now set d = L.d'y and note as before that  dS1 - f*L is a linear combination of 

fibre components,  hence one can easily check that  

(1.9) 
slEC[ j=l 

~2 e Cl vC~ 

+ Z ( C I ' L ) ( Z ( e i - J ) E ;  + g ' C I ) - a F .  
sleC] 

~2eciuc~ 

Then taking the dot product with Sl yields a = dm. Then squaring both sides 

we get (using the notation C,,z.L to denote Ci,z.L for generic z in the boundary 
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component Z) 

L2d(y)=(f*L)2=d2m- E s E g'i(C~'L)2 
sleci s,ec~ 

i i i i 82~C1uC 2 82~C1u62 

= V"  (C .L + CI.L?   - V '  - 
Z 2 

,~ec~ ~ecluc; ~ecluc~ 

- -2  E (CI'L)(CI'L)e~- E e i (C~ 'L)2-  E e '(CI'L)2 
81 EC~ ,~1 ,-~2 EC~ $1,82 eC~ 

82E6~ 

: E d1'1 (Z)g(Z)(C1,~ .L)(C2,~ .L) - E d~ (Z)g(Z)(C,,~.L) 2. 
Z 

| 

2. Var ious  e x a m p l e s  

(a) DEL PEZZO SURFACES: ALL CURVES. We begin by recalling some facts. 

Let S be a Del Pezzo surface, with (ample) anticanonical bundle - K  and Picard 

group N. Let us call a class C E N good  if -KC >_ 0 and C 2 _> 0. Then 

(i) if C is the class of an integral curve C', then either C' is a line ( - K C '  = 

1, ~2 = - 1 ) ,  or C is good; 

(ii) If C' is an irreducible rational curve, then as such C' has unobstructed 

deformations of dimension - K . C -  1 which are generally transverse to given 

subvarieties. (See, for instance, [H] or Koll&r's book on rational curves.) 

Now (i) and (ii) easily imply the following: 

(iii) if C' C S is a good rational curve and Y is the normalization of the locus 

{C} of rational curves in the linear system [CI, then the hypotheses of Theorem 1 

are satisfied provided n --- - K . C -  1 > 3; the boundary loci Z all have g(Z) = 1, 

are of product type and correspond to (ordered) expressions 

( 2 . a . t )  c = [~1 = c l  + c2 

with cl, c2 representable by (irreducible) rational curves. 

To see that  (iii) holds consider the general divisor D = ~1" miCi- on S corre- 

sponding to some boundary divisor Z of Y and say r > 1. Then D can a priori 

move in a multiplicity- and component-preserving family of dimension at most 

(*) E ( -K .C i  - 1) ~ ( D . -  K) - r < D . -  g - 2 = dim(Z). 

It follows that  equality must hold throughout (*), so that r = 2 ,ml  = m2 = 1, 

and moreover C1, C2 are general in their respective families and in particular 
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mutually transverse, which easily implies that g(Z) = 1 and Z is of product 

type. The case r -- 1 easily implies that C'1 is a line, contradicting goodness. 

This proves (iii). 
Explicitly, taking L = - K  leads to the following, in which we denote d(Y) by 

Nc: 

K2N~ = E NclNc2[(-K'Cl)(-K'c2)(Cl"C2)(-K.c-4 
c=c1+c2 -K.cl - 2 / 

(2.a.2) - ( -  K.Cl )2c1.c2 ( _-K Kc c -_ 41 ) ] 

Now at least if S has anticanonical degree ~ 3, then any good class C is repre- 

sentable by a rational curve (see Appendix). Whenever this is so, the problem of 

effectively computing the RHS of (2.a.2) becomes a purely combinatorial matter. 

For S = ~ ,  (2.a.2) reduces to the 'associativity relation' of Kontsevich et al., cf. 

[FP]. 

(b) HIGHER DIMENSIONS. There are potentially several ways to meaningfully 

extend Theorem 1 to the case of a higher-dimensional ambient variety. Without 

getting systematically involved in this matter here, we shall merely indicate a 

relatively obvious such extension, obtained by simply replacing point conditions 

by incidence with respect to codimension-2 linear spaces; see also JR3]. Let 
{6'u : Y C Y} etc. be as in Section 1, except that m = dim S is no longer 

assumed to equal 2, while the line bundle L is assumed very ample. We may 

then define 

i dL(Y) = # { y :  C'y n L~ N L~ # O i = 1, . . .  ,n}, Lj G ILl general 

and likewise for the d~J(z). The same arguments apply, notwithstanding that 

the analogues of $1 and $2 are now only multisections: the essential point is 
that, still, S~ -- S 2. The following formula then obtains 

(2.b.1) dL (Y) -- E i(Z)[(C1L)(C2L)d 1'1(Z) - (C1.L)2d ~ (Z)]. 

(c) THE PLANE: SOME CODIMENSION-1 COUNTS. Here we give counts asso- 

ciated with some codimension-1 loci in the family of all rational plane curves, 

beginning with the number Cg of rational curves of degree d through 3 d -  2 points 

having a node in a fixed line M. (The referee points out that a formula for Cd 
was also obtained by Caporaso-Harris and by Pandharipande). The marked 

boundary components (Z, (71, C2) are easily determined and come in two types, 



116 Z. RAN lsr. J. Math. 

depending on whether Cl and C2 have a common point on M, or whether Ca or 

C2 has a node on M. For the first type we have, e.g., 

(2.c.1) 3 d l - 2  dl + \ 3d2 - 2 ] d2 (dld2 -1)Na,  Nd~, 

while the second is of product type. Applying Theorem 1, we obtain a recursion: 

(2.c.2) 

Cd=~'~ [((3d252)d2- (3d-5 \ 3 d l  -- 1.] 

( ( 'd -5  ~ (3d-5 ~d,~)d21 (dld2_l)Nd, Nd.2 
+ \ \ 3 d 2  - 2]  d,d, - \3d2 - 3 ]  

, 3 , 1 3 )  + ( 3,, 3 
-- ( 3d5 ~ d 2 ( 3d-5 ~ d2] dld2CdlNd,. aa,-2j -\ad2-2] 

Next, we consider some numbers which may be derived from Ca by elementary 

means. First, let Bd be the number of rational curves of degree d through 3d - 2 

general points which are properly (i.e. at a smooth point) tangent to a fixed line 

M. Then Be is related to Cd by the formula 

(2.c.3) Bd + 2Cd = 2(d - 1)Nd. 

This comes about by considering the (rational) 'restriction' map 

r:  Vd,0 c ~ ' . ' -  -~ 

C ' ~  C ' n M ,  

Vd,O = variety of degree - d  rational curves, 

which pulls back the discriminant hypersurface (of degree 2(d - 1)) to the sum 

of the properly tangent locus (with multiplicity 1) plus the 'node on M'  locus 

(with multiplicity 2). 

A natural generalization of Bd is the number Bd,e,o of curves (rational degree 

-d, through 3 d -  2 genral points) properly tangent to a given curve E of degree e 

and geometric genus g. To compute this we return to the situation of (1.5) where 

now f :  X --+ IF e has degree Nd, and note that Bd,e,9 coincides with the number 

of proper (smooth) ramification points of 7rl/-,(E), and that the singularities of 
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E reduce the geometric genus of f - a  (E) by Nd((e - 1)(e - 2)/2 - 9). Hence by 

the adjunction formula 

(2.c.4) 

Bd,r = e f ' L ( e f * L  + K x  - KB)  - 2Nd((e - 1)(e - 2)/2 - 9) 

= e(e - 1)Na + e f * L ( f * L  + h ' x  - KB)  - (e - 1)(e - 2)Nd + 2qNd 

= 2(e - 1)Nd + eBd + 2gNa 

where L = line. In particular for 9 = 0 we obtain 

(2.c.5) Bd,e,O ----- 2(e - 1)Nd + eBd. 

(d) SOME CROSS-RATIO COUNTS: Here we consider some (still codimension-1) 

counts involving a 'marked' rational curve C. More precisely, we shall assume 

the normalization C of C' is isomorphic to a p1 carrying an ordered quadruple of 

distinct points (Pl, ql, P2, q2) such that the isomporphism class of 

(p1 {p,, q: }, {p2, q2}) 

is fixed. 

Note that 

Aut( P1 , {Pl, ql } {P2, q2}) = Z~ 

where a generator induces the permutation (Pl, qx) (P2q2) (if we identify (Pl ql) = 

(0, cx~) and view p2, q2 as complex numbers, this generator is given by the rational 

function w~2 ). 

Now fix reduced plane curves El,  F1, E2, F2 in general position of respective 

degrees e,, f~ as well as a distinct quadruple Pl,ql ,P2,q2 E pa . We consider 

the family Y of rational curves C of degree d which admit a parametrization 

f:  IP 1 ~ C' such that 

f ( {P i ,q , } )  C E,, i =  1,2. 

This family is clearly 3 d -  2-dimensional and, moreover, the number of curves in 

Y through 3d - 2 general points in the plane depends only on the degrees el, e2. 

We may therefore set 

N ( d  < (el), (e2)) :-- d ( Y )  = 1 / 2 # { f :  ([p1, {Pl, ql }, {P2, q2}) ~ ( ~ ,  E, ,  E2)} 

(this is the number of f ' s  up to source-isomorphism). Similarly let 

N ( d  < el, f l ,  (r : # { f :  (~ l ,p l ,q l ,  {P2,q2}) --> ( ~ ,  EI ,F1,E2)}  
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(this time there are no source-automorphisms, hence no need for the 1/2 factor), 

and likewise N (d < el, f l ,  e2, f2). Specialization yields some easy relations among 

these numbers: for instance, by specializing a curve of degree el + f l  to one of 

the form E1 + F § 1, we conclude 

N(d < (el § fl), (e2)) =N(d < (el), (e2)) + N(d < (fl)(e2)) 

+ N(d < el, fl,  (e2)) + N(d < f l ,el ,  (e2)), 

etc.; also, these numbers possess an evident symmetry, e.g., 

N(d < el, f l ,  (e2)) = N(d < fl, el, (e2)). 

It follows formally that 

N(d < (ei), (e2))=eie2N(d < (1), (1)) + (c 1 -- I ) ( e  2 -- 1)(e 1 -~- e2)N(d < 1, 1, (1)) 

(2.d.1) § (el - 1)(e2 - 1)ele2N(d < 1, 1, 1, 1), 

N(d < el,fl,(e2)) = elfle2(N(d < 1,1,(1)) + (e2 - 1)N(d < 1,1,1,1)), 

N(d < el,f2, e2,f2) = elfle2f2N(d < 1,1, 1, 1). 

It thus suffices to compute the basic numbers 

N(d < (1),(1)), N(d < l,l ,(1)),  N(d < 1,1,1,1), 

for which we may set up a recursion in d based on Theorem 1. Consider, e.g., the 

case of N(d < (1), (1)). The curve C = ]p1 __+ ~ of degree d will be marked with 

{Pl,ql}, {P2,q2}, and the boundary components may be determined by an easy 

dimension count, e.g. based on the deformation theory of the moduli spaces of 

stable maps [FP] (though this is not essential). They correspond to pairs (C1, C2) 

where C1 is of degree d marked with {p~, ql}, {P2, q2} and isomorphic as such to 

C1, pO = C1 N C2 and 6'2 is of degree d2 and marked with a 'new' Pl playing the 

role of the old. It is clear that  for such a component Z we have 

/ 3d-5 
d i ' i ( z )  : i (dl  < l ' d 2 '  (1))d2 ~ 3 d  2 - 2 ]  § 1) ~xad I _ 2 

/ 

(2.d.2) 
= N(d, < 1,1, (1))d2 2 ( 3 d -  5 ~ ( 3 d -  5 ) 

\3d2 - 2 ]  + Nd~Na2d21(dl - 1) \ 3dl - 2 
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Here the first summand comes from choosing C'2 through 1 + 3d2 - 2 points, then 

a point on C2 ~ El,  then d'l; the second from choosing C1 through 1 + 3dx - 2 

points, then as an ordered pair on C1 n E2, then a point 01 C 01 N E---which in 

turn dcterrnines pl ~ via cross-ratio--then finally Co. Applying Theorem 1 (recall 

that each Z has two markings so must be counted twice), we conclude: 

( 3 d - 5  
N(d < (1),(1))= ~ did 3 \ 3 d 2 _ 2  

(2.d.3) 

- did2 \3di - l N(da < 1, 1, (1)) 

d~d2 \ 3 d l - 2 ] - d ~  3d2-1 N(d2 < 1,1,(1)) + 

+ 

Recursions for N(d < 1, 1, (1)) (involving N(d < 1, 1, (1)), N(d < 1, 1, 1, 1) and 

Nd) and for N(d < 1, 1, 1, 1) (involving N(d < 1, 1, 1, 1) and Nd) may be obtained 

similarly. 

For subsequent applications we require a 'dual' cross-ratio count when the 

marked curve (~1 and /~1 are fixed, as is the marking's cross-ratio, while E2 is 

allowed to vary (of course as a rational curve of given degree e2 and through 

3e2 - 2 general points). Thus define numbers 

N(d , (e l )  > (e2)) = :~{f: (~',{pl,q,},{p2,q2}) ~ (C',E1,E2)} 

with the usual provisi, where C' is fixed rational of degree d, E1 fixed integral 

nodal of degree el,/~2 rational of degree e2 through 3e2 - 2 points, and the source 

of f is fixed up to isomorphism. We analogously define numbers 

N(d, el,fl  >(e2)) ,  N(d,(el),f2 > e2), N(d, el , f l , f2 >e2) .  

As before these behave simply with respect to the fixed unmarkcd curvcs, e.g., 

(2.d.4) N(d, (el) > (e2)) = elN(d, (1) > (e2)) + el(el - 1)N(d, 1, 1 > (e2)). 

Now to compute, e.g., N(d, I, 1, (e2)), the method of Theorem 1 yields a recur- 

sion in e2. The boundary components Z = {E2,1 U E2,2} are easily determined 

and fall into two types depending on whether P2,q2 C E2,1, say (type (1)) or 
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p2 E E2,1, q2 G E2,2 (type (2)). The  type (1) components  are easily enumerated  

in terms of N(d, 1, 1 > (e2,1)) and the type (2)'s in terms of 

N(d, 1, 1, e2,1 > e2,2) -- e2jN(d, 1, 1, 1 > e2,2) = d2e2,1N~2,2 

( the la t ter  equali ty is due to the fact tha t  determining the position of Pt, ql,P2 

determines tha t  of q2 via the cross-ratio). Thus one is finally reduced to com- 

puting, e.g., g ( d , l , 1  > (1)). Let 's  identify (Pl ,ql)  = (0, cx~), which then 

identifies cross-ratio with ordinary ratio. A moment ' s  reflection shows tha t  

N(d, 1, 1 > (1)) = d2Md, where Md is the number of pairs (a, b) C C x C such 

tha t  a/b E {A - 1, A- l}  for a fixed general A E C and for a general degree-d map 

f :  1?1 __+ p1, f(a) = f(b). Specializing ~ ~ 1 keeping track of multiplicities and 

using the Riemann-Hurwi tz  formula, it is elementary tha t  Md = 4(d - 1), so 

(2.d.5) N(d, 1, 1 > (1)) = 4(d - 1)d 2. 

Similarly, 

(2.d.6) Y(d, (1) > (1)) = 2(d - 1)42 

(here one divides by 2 due to the involution (Pl, ql)(P2q2)). Thus one can compute  

all the  above-mentioned cross-ratio counts. 

3. Higher genus 

For plane curves of positive genus, there are (at least) two types of counts one 

may wish to carry  out,  depending on whether  the moduli  of the curve are fixed 

or unrestr icted.  For unrestr icted moduli  one has the number  N(d, g) of (integral) 

curves of degree d and geometric genus g through 3d + g - 1 general points, for 

which a recursive formula was given in our earlier paper JR]. For fixed moduli,  

one has the number  N(d, g) of integral curves of degree d birational to  a fixed 

general smooth  curve of genus g and passing through 3d - 2g § 2 general points 

if g >__ 2 (or 3d - 1 points if g = 1). The  case g = 1 was done by Pandhar ipande  

[P], who shows 

(3.1) N(d, 1) - (d - 1)(d - e) N(d,O). 
2 

We now show how the method of this paper  yields a procedure for comput ing 

N(4, 2); see [R'] for a different approach to N(d, g) in general. (After this was 

first wr i t ten  the au thor  became aware of an eprint  by Katz,  Qin and Ruan [KQR] 
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which also considers N(d, 2) albeit from a slightly different viewpoint,  based on 

Kleiman's  tr iple-point  formula; in view of this we'll be sketchy on some of the 

more tedious details.) 

Now specializing an abstract  curvc C of genus 2 to a general binodal rational 

curve Co, with normalization (p1, {Pl, qa }, {P2, q2}) -+ (Co, node, node), we see 

that  N(d, 2) may be identified with the number of maps 

f :  ipl ~ p2 

with image C' = f(IP 1) passing through 3d - 2 general points, such that ,  for 

a fixed quadruple  (Pl, ql,p2, q2), f(P,) = f(q,),i = 1, 2, up to identifying f ~,- 

f _< o where (~ is the unique projective automorphism inducing the permutat ion 

(Pl,ql)(P2,q2) (i.e. the map induced by the limit of the hyperelliptic involution 

on C). To this Theorem 1 is applicable, and it remains to list the boundary  

components  Z. These come in two types: 

(1) Z~,,a 2, which corresponds to maps 

(PI {P~ {P2, q2 1 0"(]"'f2),,'O , }) ~ ( P e , P l , P l )  > ~- 

where im f, = C, has degree di, f l  (p0) = f2(p0), f l  (ql) = f2(Pa), fl (P2) = fl  (q2). 

To enumerate  Z 1,,d2 we introduce nodal cross-ratio counts 

N(d < (e)) = # { f :  ( p l , {p l , q l } ,  {P2,q2}) ~ ( ~ , E ,  point)} 

where E is a fixed curve of degree e, the point is unspecified (i.e., the condition 

is f(P2) = f(q2)) and im(f )  is a degree-d curve through 3d - 2 general points; 

similarly N(d > (e)) where i m f  (and the cross-ratio) are fixed and E is rational 

of degree e through 3e - 2 general points. With these we have, e.g., 

(3.2) 

3d Nd:N(dl < (d2)) + 3da d 1,1 (Z l,,d:) = 3d: - 

(3.3) 

3 d -  2 Na2N(dl  < (d2)) + 3dl - d~ = 3d2 - 3 

The  numbers  N(d < (e)) and N(d > (e)) may be computed recursively in 

ana logy- -as  well as linkage with the cross-ratio numbers of Section 2(d): e.g. 

the recursion for N(d < (e)) involves N(dl < (e)) when P2,q2 go to a node 

on one component ,  as well as N(dl < (d2), (e)) where the p1 splits so Pl goes 
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off to another component; and there will also be a N(dl ,  (e) > (d2)) where an 

unmarked curve of degree d2 varies. Details are similar to the above. 

(2) In this type 

Z~l,d2 { (px, {p0, q0}, 1 0 = U[~2,ql,(/1 ) ----r a f ,  

where Ci = fi(P~) have degrees do = 0, dl, d2, C1 and C'2 are tangent at C0 = 

f l (p  ~ = f2(ql ~ and meet at fl(Pl) = f2(ql). This component has g = 2, and 

may be easily enumerated as in Section 2, e.g., 

dl,l(Z~il,d~) :Bdl,d2,0 ( 3d-2  ~ (3ddl--22) (did2-2) 3dl - 2 ]  .(did2 - 2) + Bd:,d~,O 

( r i d -  2 ~ (did 2 -  2) = ( 2 ( d 2 -  1)gd~ +d2Bd~) \ 3 d 2 -  2'] 

(3.4) + (2(dl - 1)Nd2 + dlBd~) ~,3dl - 2'] (did2 - 2), 

(3.5) d~ =(2(d2 - 1)Nd~ + d2Bd~) ( 3d23d-- 23 ) (did2 - 2) 

( 3 d -  2 x (d id2_  2). 
+ (2(dl - 1)Nd: + diBd:)  \ a d l  - 1 /  

In this way we may obtain recursions for all the nodal cross-ratio numbers and 

hence compute N(d,  2) via 

02 2 N(d,  2) = E dld2(dl'l(Z~l, d2) + 2d1'x(z21,d~)) - d2(d~ -~- 2d ' (Z~l,d2)). 

A p p e n d i x :  R a t i o n a l  curves  on Del  Pezzo surfaces 

The following result, though quite natural, seems to our knowledge to have 

escaped explicit mention in the literature. 

PROPOSITION A: Let S be a Del Pezzo surface of anticanonical degree at least 
3 and c a divisor class on S with c 2 > 0 > c.K. Then c contains an irreducible 

rational curve. 

Proof." S is either a blown-up plane or a quadric, and we assume the former 
case as the latter is much simpler. By Riemann-Roch, c is clearly effective. If the 

(anticanonical) degree - K . c  = 1, 2, our claim is easy, and likewise if c -- - K .  

In general, we use an induction on - K . c  >_ 3. Let D be a line on S (i.e., 
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D 2 = - 1  = D . K )  such that  c . D i g m i n i m a l ,  and set c' = c - D .  I f c . D  < 0, 

induct ion clearly applies to c' yielding an irreducible rat ional  representative C '  

moving in a family of rational curves of dimension - K . c  - 2 > 1, and C '  can 

therefore be specialized to (an image of) a connected rational chain Co meeting 

D. Then  by easy and s tandard  deformation theory (using ampleness of - K ) ,  

Co + D ~ c can be deformed to an irreducible rational curve. If  c . D  = 0, look 

instead for the smallest strictly positive c .D' ,  D'  = line and argue as below. (Or 

alternatively, blow D down and restart  the a rgument - -which  basically amounts  

to the same thing.) Now let's assume c .D  > 0. It  will suffice to prove 

(c - D) 2 > 0, 

for then deformation theory can be applied as above to conclude. To this end 

let us consider a suitable model of S as a blowup of the plane in r points, r <_ 6, 

and represent c in the usual way as 

(b;al _> . . .  >_ at) ,  

where we may assume 

ar = c .Er  = c . D  

is minimal as above, which translates into 

b > a l  q- a2 -{- a t ,  

2b > al + . . .  + a5 + a~, 

and our claim amounts  to 

2 N ( c )  :=  b 2 -  a 2 . . . . .  a~ > 2a~ + 1. 

Let ' s  do some tail-flattening on the sequence a l , . . .  ,a~. Now if aT < a t -1  < a2, 

say, we may  perform a 'switching t ransformat ion '  with 

a'~_l = a ~ - i  - 1, a'~_ 2 = ar -2  q- 1 

which will only decrease N ( c )  without  affecting ar. Continuing in this way we 

will eventually achieve 

a 3  = �9 �9 �9 = a r  
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and  in the  process the  value of N has decreased,  a l  has increased while b,a~ 

have remained  unchanged.  Then  doing a s imilar  ' swi tch '  with a2 and a l  we may  

fur ther  assume a2 = at .  Now suppose  al  _< 2a~ - 1. Clearly a~ <_ 1/3b: so 

2 >  6 - r b ' 2  b 2 - a ~  . . . . .  a r _ - - ~  + 4 a ~ - l ,  

therefore  b 2 - a 2 . . . . .  d~ > 2at  + 1 unless a~ = 1, b = 3 in which case our original  

class c must  have coincided with the  ant icanonical  class c = - K  = (3; 1 , . . -  1) 

which we assumed  was not  the  case. Now if oll the  o ther  hand al  _> 2a~, we have 

b 2 ~ (a 1 "]- 2ar)  2 ~ a~ Jr- 12a2~ > a 2 + (r  - 1)a2~ + 2a t  + 1 

a s r  < 6 .  | 
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